

Lindab DR24

Wanddurchlass

DR24

Wanddurchlass

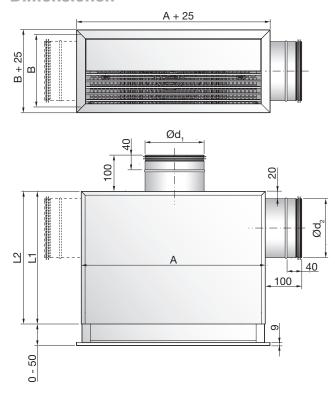
Beschreibung

DR24 ist ein rechteckiger Wanddurchlass mit einstellbaren Lamellen für eine jederzeit veränderbare Wurfweite. Der Durchlass ist für die horizontale Zufuhr von Kühlluft geeignet. Durch die Lamellen auf der Vorderseite kann die Wurfweite verändert werden. Der Durchlass wird mit einem Anschlusskasten Typ WB kombiniert (siehe Produktabbildung oben), welcher mit einer Mess-/Drosseleinrichtung ausgestattet ist und eine individuelle Luftmengenregulierung ermöglicht.

- Einstellbare Lamellen.
- Flexibles Luftführung.
- Unabhängig von einer geraden Luftführung vor dem Durchlass.
- Teleskopfunktion im Anschlusskasten.

Wartung

Zur reinigung der internen Komponenten oder für den Zugang zum Anschlusskanal kann die Frontplatte leicht ohne Werkzeug demontiert und die Mess-/Drosseleinrichtung herausgenommen werden. Die sichtbaren Teilen des Durchlasses können mit einem feuchten Tuch abgewischt werden.


Bestellcode

300x100 - 500x300

Produktbezeichnung	DR24	s	AxB
Тур			
DR24			
Funktion			
S (Zuluft)			
Größe (A x B)			
300x100 - 500x300			
Produktbezeichnung	WB	а	AxB
Тур			
WB			
Amadalisaa			
Anschluss			
1 = rückseitig			

Beispiel: DR24-S-500x150 + WB-1-500x150

Dimensionen

WB-1 rückseitiger Anschluss

A x B Größe	Ød ₁	Α	В	L1	m
mm	mm	mm	mm	mm	kg
300 - 100	80	300	100	240	2,50
400 - 150	100	400	150	240	3,50
500 - 150	125	500	150	240	4,30
500 - 200	160	500	200	240	5,50
500 - 300	200	500	300	240	7,40

WB-2 seitlicher Anschluss

A x B Größe	$Ød_2$	Α	В	L2	m
mm	mm	mm	mm	mm	kg
300 - 100	80	300	100	280	2,50
400 - 150	100	400	150	300	3,50
500 - 150	125	500	150	325	4,30
500 - 200	160	500	200	360	5,50
500 - 300	200	500	300	400	7,40

Material und Ausführung

Material: Verzinkter Stahl
Standardausführung: Pulverbeschichtet
Standardfarbe: RAL 9010 weiß, gloss 30

Der Durchlass ist in anderen Farben erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

Wanddurchlass

DR24

Technische Daten

Leistung

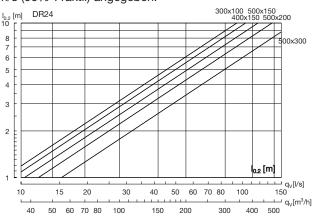
Die Diagramme zeigen den Gesamtdruckverlust Δp_{t} [Pa], Wurfweite I $_{0,2}$ [m] sowie Schallleistungspegel L $_{WA}$ [dB(A)] als Funktion des Volumenstromes q $_{v}$ [l/s, m³/h].

Frequenzabhängiger Schallleistungspegel

Der Schallleistungspegel im Frequenzbereich wird durch $L_{wok} = L_{wa} + K_{ok}$. definiert. Die Werte für K_{ok} werden in Tabellen unter den folgenden Diagrammen angegeben.

Schnellauswahl

WB-1 rückseitiger Anschluss


	Minimum			50 Pa	p _t = 50 Pa		
AxB	P _i >	5 Pa	L _{WA} =3	L _{WA} =30 dB(A)		5 dB(A)	
mm	l/s	m³/h	l/s	m³/h	l/s	m³/h	
300 - 100	16	58	-	-	29	104	
400 - 150	33	119	-	-	38	137	
500 - 150	44	158	-	-	60	216	
500 - 200	50	180	62	223	86	310	
500 - 300	61	221	84	302	109	392	

WB-2 seitlicher Anschluss

	Minimum			50 Pa	p _t = 50 Pa	
AxB	P _i >	5 Pa	L _{WA} =3	L _{WA} =30 dB(A)		5 dB(A)
mm	l/s	m³/h	l/s	m³/h	l/s	m³/h
300 - 100	14	49	20	72	26	94
400 - 150	29	106	39	140	50	180
500 - 150	35	126	-	-	56	202
500 - 200	47	169	-	-	83	299
500 - 300	56	200	-	-	-	-

Wurfweite I_{0.2}

Die Wurfweite wird bei einer Endgeschwindigkeit von 0,2 m/s (90%-Fraktil) angegeben.

Eigendämpfung

Eigendämpfung des Durchlasses ΔL zwischen Rohr-/Kanalsystem und Raum, einschließlich Mündungsreflexion.

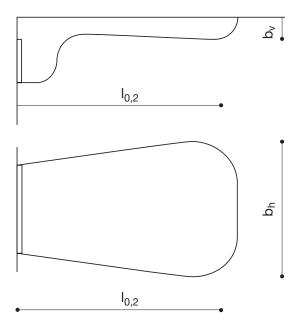
WB-1 rückseitiger Anschluss

AxB	Mittelfrequenz Hz							
mm	63	125	250	500	1K	2K	4K	8K
300 - 100	24	18	14	7	9	11	11	12
400 - 150	21	19	7	6	9	11	11	11
500 - 150	20	19	7	9	8	10	10	10
500 - 200	17	15	5	10	8	12	10	10
500 - 300	15	12	4	13	9	11	10	10

WB-2 seitlicher Anschluss

AxB	Mittelfrequenz Hz							
mm	63	125	250	500	1K	2K	4K	8K
300 - 100	22	17	11	8	10	13	11	11
400 - 150	21	16	5	9	8	12	11	11
500 - 150	19	18	5	8	8	10	10	10
500 - 200	18	13	3	9	11	6	8	7
500 - 300	15	10	4	4	12	12	11	11

Wanddurchlass

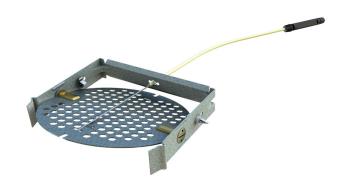

Technische Daten

Strahlausbreitung

I_b = Abstand vom Durchlass bis zum Punkt der maximalen Strahlspreizung.

b_v = Strahldicke in vertikaler Ebene.

b_h = Strahlbreite horizontaler Ebene.

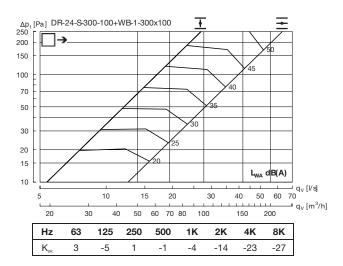

Normale Wurfweite 45° nach oben

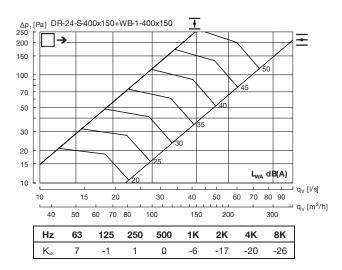
 $I_{0,2}$: Diagrammwert b_v : 0,05 × $I_{0,2}$ b_h : 1,8 × $I_{0,2}$

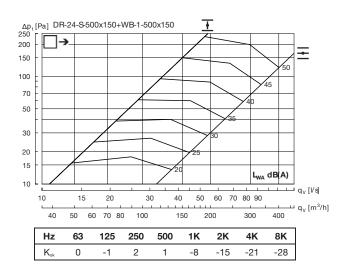
Lange Wurfweite 0°

 $I_{0,2}$: 1,5 × Diagrammwert $I_{0,2}$: 0,1 × $I_{0,2}$ $I_{0,2}$

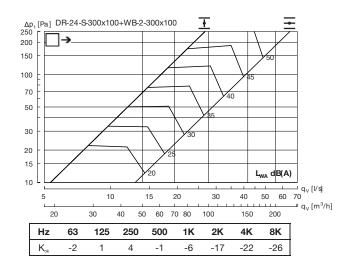
WB Drossel

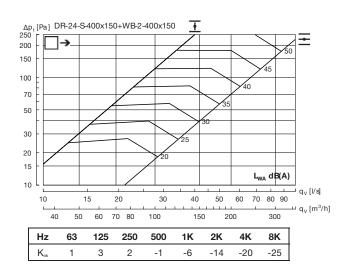


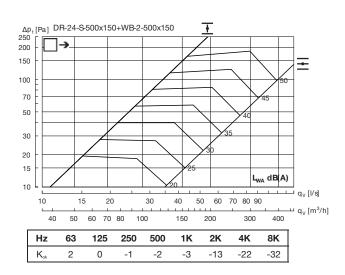



Wanddurchlass

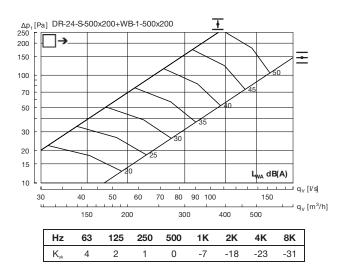
DR24

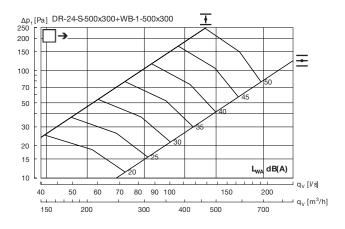

WB 1 - rückseitiger Anschluss





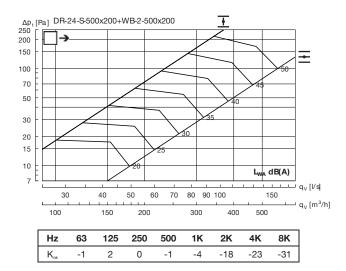
WB 2 - seitlicher Anschluss

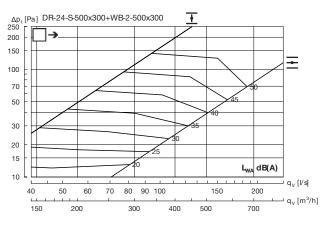




DR24

Wanddurchlass


WB 1 - rückseitiger Anschluss



Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	2	2	2	0	-7	-16	-22	-30

WB 2 - seitlicher Anschluss

ı	Hz	63	125	250	500	1K	2K	4K	8K
ı	K _{ok}	3	2	-2	0	-4	-17	-28	-37

Die meisten von uns verbringen den Großteil ihrer Zeit in Innenräumen. Das Innenraumklima ist entscheidend dafür, wie wir uns fühlen, wie produktiv wir sind und ob wir gesund bleiben.

Wir bei Lindab haben uns deshalb zum vorrangigen Ziel gesetzt, zu einem Raumklima beizutragen, das das Leben der Menschen verbessert. Dafür entwickeln wir energieeffiziente Lüftungslösungen und langlebige Bauprodukte. Wir wollen auch zu einem besseren Klima für unseren Planeten beitragen, indem wir auf eine Weise arbeiten, die sowohl für die Menschen als auch die Umwelt nachhaltig ist.

Lindab | Für ein besserees Klima

