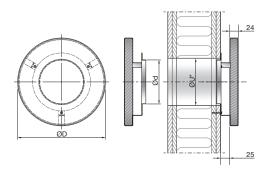


Beschreibung


OLC ist ein rundes Nachströmventil für die direkte Wandmontage. Es besteht aus zwei schalldämmenden Kulissen, die auf beiden Seiten einer Wand montiert werden.

- Diskretes Design
- Schalldämmende Kulissen

Wartung

Die Frontplatte kann entfernt werden, um die Reinigung von internen Teilen zu ermöglichen. Die sichtbaren Teile des Auslasses können mit einem feuchten Tuch abgewischt werden.

Abmessungen

OLC Größe (Ød)	ØD mm	*ØU	m kg
100	200	108-110	0,8
125	250	133-135	1,0
160	300	168-170	1,2

 $\emptyset U^* = Ausschnittsma\beta$ in der Wand = $\emptyset d + 10$ mm

Schnellauswahl

Größe	∆p _t = 10 Pa		$\triangle p_t = 10 \text{ Pa}$ $\triangle p_t = 15 \text{ Pa}$		∆ p _t = 20 Pa		*D _{n,e,w}
Ød	l/s	m³/h	l/s	m³/h	I/s	m³/h	dB
100	19	68	24	86	27	97	49
125	28	101	34	122	39	140	47
160	40	144	49	176	56	202	44

^{*} Werte gültig für Leichtbauwand mit 95 mm Isolierung.

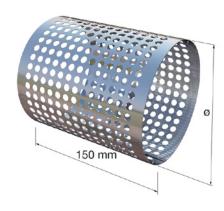
Bestellbeispiel

-		
Produkt	OLC	aaa
Тур		
OLC		
Größe	<u> </u>	
100, 125, 160 mm		

Beispiel: OLC - 125

Material und Ausführung

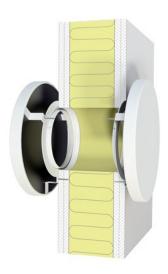
Montagebügel: Verzinkter Stahl Frontplatte: Verzinkter Stahl Pulverbeschichtet Standardausführung: RAL 9010 glänzend (30) Standardfarbe:


Der Auslass ist in anderen Farben erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

OIC

Zubehör

OLCZ - Perforierte Wandhülse



Bestellbeispiel

Produkt	OLCZ	aaa	
Тур			
OLCZ			
Größe			
Ø100, 125, 160 mm			

Beispiel: OLCZ - 150

OLC in der Wand installiert

OLC mit OLCZ in der Wand installiert OLCZ als Zubehör.

Für weitere Informationen, siehe OLC Montageanleitung.

Technische Daten

Leistung

Volumenstrom $q_{_{V}}$ [l/s] und [m³/h], Gesamtdruckverlust $\Delta p_{_{t}}$ [Pa] und Schallleistungspegel L_{WA} [dB(A)] sind für einen Auslass auf beiden Wandseiten angegeben.

Dimensionierung

Elementnormierte Dämmzahl $D_{n,e}$

Gewichteter Wert $(D_{n,e,w})$, bewertet nach ISO 717-1.

Leichtbauwand mit 95 mm Isolierung

Größe		Mittelfrequenz Hz				
mm	125	250	500	1K	2K	$^*D_{n,e,w}$
100	32	46	46	48	54	49
125	34	43	43	46	51	47
160	34	40	40	44	50	44

Leichtbauwand mit 70 mm Isolierung

Größe		ľ	/littelfrec	uenz Hz		
mm	125	250	500	1K	2K	$^*D_{n,e,w}$
100	30	40	38	42	50	43
125	30	37	37	42	49	43
160	30	34	34	40	50	41

Massivwand ohne Isolierung

Größe	Mittelfrequenz Hz					
mm	125	250	500	1K	2K	$^*D_{n,e,w}$
100	24	24	23	32	40	31
125	23	24	23	33	40	31
160	24	24	23	32	39	30

Technische Daten

Berechnungsbeispiel

Bei der Auswahl eines Nachströmventils berechnet man die Abnahme der Schalldämmeigenschaften einer Wand.

Hierfür müssen die Wandfläche und das bewertete Bauschalldämm-Maß Rw bekannt sein.

Dann findet eine Anpassung in Bezug auf den $D_{\rm n.e}$ -Wert des Auslasses statt. D_{n,e} ist der R-Wert des Auslasses bei einer Übertragungsfläche von 10 m², wie in ISO 140-10 angegeben.

Der D_{ne}-Wert kann anhand der folgenden Werte in den R-Wert für andere Übertragungsflächen umgerechnet werden.

Fläche m²	10	2	1
Korrektur dB	0	-7	-10

Das untenstehende Diagramm zeigt die Abnahme des Bauschalldamm-Maßes in einem angegebenen Oktavband (D_{n.e}) oder dem gewichtetem Wert (D_{n.e.w}).

Als grobe Schätzung kann die Berechnung direkt mit dem R_w-Wert der Wand und dem gewichteten Wert (D_{n.e.w}) des OLC vorgenommen werden.

Beispiel:

(Siehe untenstehendes Diagramm):

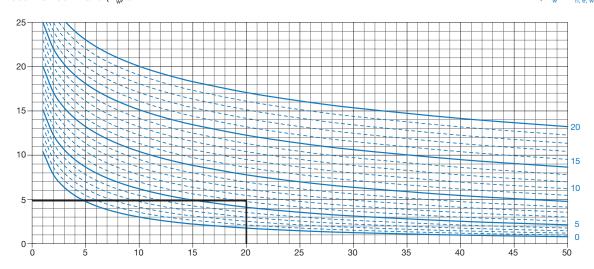
R,, (Wand): 50 dB

D_{n,e,w} (Auslass): Wandfläche: 44 dB $R_w - D_{n,e,w} = 6 dB$

20 m² Anzahl Auslässe: $20 \text{ m}^2/1 = 20 \text{ m}^2$

Angegebene Abnahme von Rw (Wand): 5 R...-Wert für Wand mit Auslass ~50-5 = 45 dB

Die Berechnung kann auch mit der folgenden Formel durchgeführt werden:


$$R_{res} = 10 \cdot Log \quad \frac{S_{Wand}}{(10m^2 \cdot 10^{-0,1 \cdot D_{n,e}}) + (S_{Wand} \cdot 10^{-0,1 \cdot RWand})}$$

wobei:

- R_{res} die sich ergebende Dämmzahl für Wand und Auslass
- S die Wandfläche ist.
- D_{ne} der D_{ne}-Wert des Auslasses ist.
- R_{Wand} der R-Wert der Wand ohne Auslass ist.

Reduktion der Wand (R,,) dB

Unterschied zwischen Wand und Auslass (R_w - D_{n.e.w}) dB

Wandfläche m² / Anzahl Auslässe [-]

