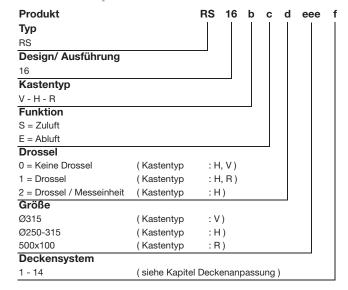


Lindab RS16

Versio - Deckendurchalässe

RS16

Versio - Deckendurchlässe

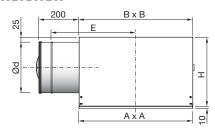

RS16 mit Anschlusskasten Typ V.

Beschreibung

RS 16 ist ein quadratischer Dralldurchlass mit verstellbaren Lamellen für Zu- und Abluft bei großen Luftmengen. Der Durchlass hat eine hohe Induktion und gewährleistet einen schnellen Temperaturausgleich sowie einen schnellen Abbau der Strahlgeschwindigkeit. Der Durchlass ist daher ideal für die horizontale Zufuhr von sehr kalter Luft. Für Abluft wird der Durchlass standardmäßig ohne Lamellen geliefert.

- Großer Dynamikbereich
- Hohe Induktion
- Ideal für die Zufuhr von sehr kalter Luft
- Zu- und Abluft
- Anschlusskasten mit verschiedenen Drosselvarianten

Bestellbeispiel



Beispiel: RS-16-V-S-0-315-1

RS16 mit Anschlusskasten Typ H.

Dimensionen

RS16-H		Α	В	Н	Е	m
Ød	Muster	mm	mm	mm	mm	kg
250	600	**_	560	340	420	12,3
315	600	**_	560	405	420	13,1

Die Abmessung A x A der Frontplatte hängt vom Deckensystem ab. Genauere Informationen zu den Abmessungen erhalten Sie unter "Deckenanpassung". Weitere Informationen zu Anschlusskästen erhalten Sie unter "Anschlusskasten".

Wartung

Zur Reinigung der internen Komponenten oder für den Zugang zum Kanal oder Anschlusskasten kann die Frontplatte entfernt werden. Die sichtbaren Teile des Durchlasses können mit einem feuchten Tuch abgewischt werden.

Material und Ausführung

Anschlusskasten:

Material: Verzinkter Stahl

Frontplatte:

Material: Verzinkter Stahl

Lamellen: Schwarzer ABS-kunststoff

Standardausführung: Pulverbeschichtet Standardfarbe: RAL 9010 weiß

Der Durchlass ist in anderen Farben erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

RS16

Zubehör

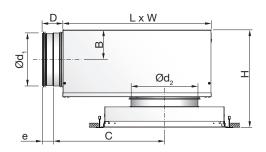
MBZ - Verlängerungsstutzen

Bestellbeispiel

Produkt	MBZ	aaa
Тур		
Größe		

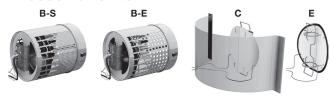
Beispiel: MBZ-200

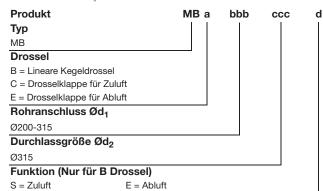
PBB - Montageschienen (set)



MHS - Änderungen vorbehalten

Beispiel: MHS


RS16-V + MB Anschlusskasten


$Ød_1$	$\emptyset d_2$		В	С	D	е	H*	L	W
m	m	Muster				m	m		
200	315	600	112	425	78	40	355 - 395	565	460
250	315	600	137	514	118	60	405 - 445	698	540
315	315	600	170	675	118	60	470 - 510	858	540

* Bei Verwendung mit MBZ wird H länger bei: $Ød_2 = 315 \text{ mm} => H +60 \text{ mm}$

Drosselvarianten

Bestellbeispiel

Beispiel 1: RS-16-V-S-0-315-1+MBB-250-315-S Beispiel 2: RS-16-V-S-0-315-1+MBC-250-315

RS16

Technische Daten

Die nachfolgenden Werte gelten für RS16-V + MBB-S/-E. Die Werte für MBC und MBE finden Sie unter www. lindQST.com

Leistung

Die Diagramme zeigen den Gesamtdruckverlust Δp_{t} [Pa], Wurfweite I $_{0,2}$ [m] sowie Schallleistungspegel L $_{WA}$ [dB(A)] als Funktion des Volumenstromes q $_{t}$ [l/s, m³/h].

Frequenzabhängiger Schallleistungspegel

Der Schallleistungspegel im Frequenzbereich wird durch L_{WA} + K_{ok} definiert. Die Werte für K_{ok} werden in Tabellen unter den folgenden Diagrammen angegeben. K_{ok} -Werte für RS16 ohne Anschlusskasten sind auf Anfrage erhältlich.

Schnellauswahl, Zuluft

RS16-V + MBB-S

RS16-V -	- MBB-S	∆p _t ≥	50 Pa	∆p _t ≥	50 Pa	
Rohr	RS16-V	30 c	B(A)	35 dB(A)		
Ød ₁	$\emptyset d_2$	l/s	m³/h	l/s	m³/h	
200	315	99	356	131	472	
250	315	126	454	160	576	
315	315	155 558		185	666	

NS19 + H

RS16 + H			$\Delta p_t \ge$	50 Pa	$\Delta p_t \ge 50 \ Pa$	
Größe Ød	Minimum		30 dB(A)		35 dB(A)	
mm	l/s m³/h		l/s	m³/h	l/s	m³/h
250	71	254	-	-	112	403
315	95	342	-	-	174	626

Eigendämpfung

Eigendämpfung der Durchlässe ΔL zwischen Rohr-/Kanalsystem und Raum, einschließlich Mündungsreflexion.

RS16-V + MBB-S/-E

RS16-V	+ MBB-S/-E								
Rohr	RS16-V			Mi	ttelfre	quen	z Hz		
Ød ₁	$\emptyset d_2$	63	125	250	500	1K	2K	4K	8K
200	315	13	9	3	16	16	15	17	16
250	315	12	7	5	17	16	17	17	18
315	315	8	10	8	17	18	17	18	23

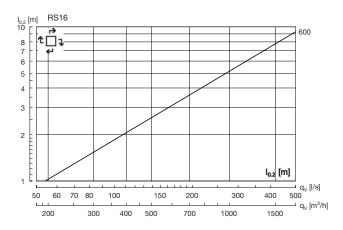
RS16 + H

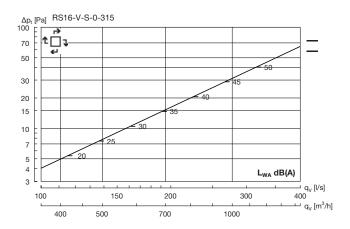
	RS16-H Größe Ød			Mit	telfreq	uenz I	Нz		
	mm	63	125	250	500	1K	2K	4K	8K
ĺ	250	13	8	4	8	5	5	7	9
	315	12	7	5	11	5	5	6	8

RS16 + R

RS16 + R								
Größe Ød			М	ittelfre	quenz	Hz		
mm	63	125	250	500	1K	2K	4K	8K
500x100	12	7	2	4	2	5	5	5

Einregulierung und Montage

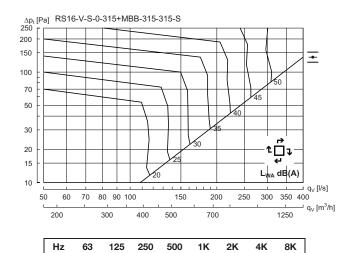

Für weitere Information siehe <u>www.lindQST.com</u> und Montage- und Einregulierungsanweisung.


Technische Daten

Wurfweite I_{0,2}

Die Wurfweite $I_{0,2}$ [m] wird bei einer Endgeschwindigkeit von 0,2 m/s angegeben. Die Benennung der Linien im Diagram spezifizieren der Muster der Frontplatte.

RS16-V ohne Anschlusskasten - Zuluft

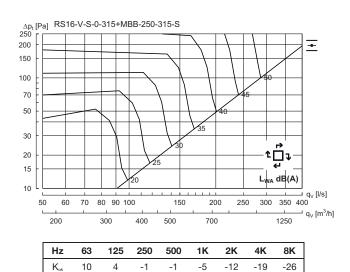

Technische Daten

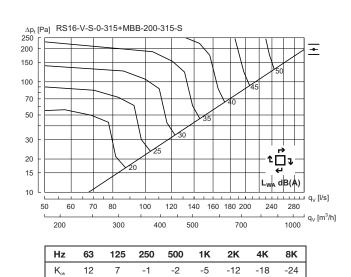
K_{ok}

8

-1

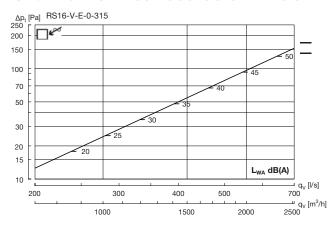
RS16-V 315 + MBB - Zuluft

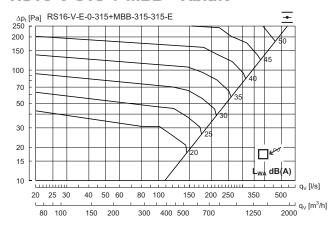

0


-6

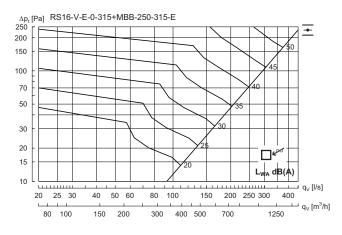
-14

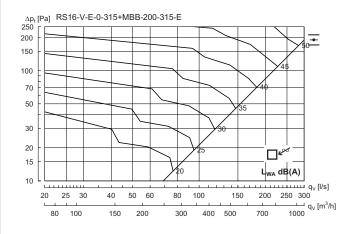
-21


-30

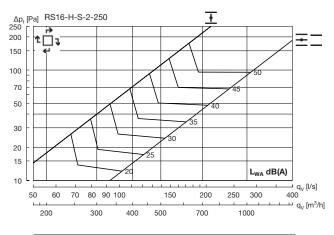


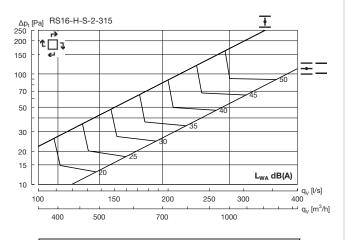
Technische Daten


RS16-V ohne Anschlusskasten - Abluft


RS16-V 315 + MBB - Abluft

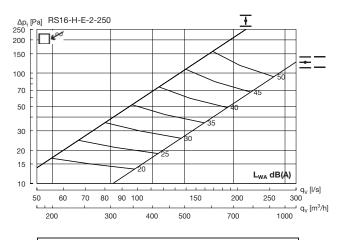
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	5	3	-4	-6	-9	-15	-26


Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	6	3	-4	-6	-11	-16	-24

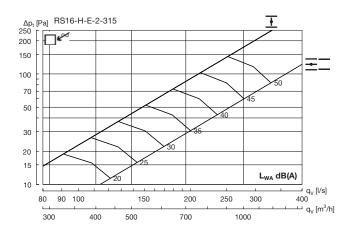

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	14	5	1	-3	-6	-9	-13	-21

Technische Daten

RS16 + H - Zuluft



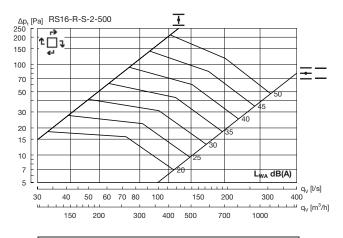
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	5	5	2	-1	-6	-13	-19	-27



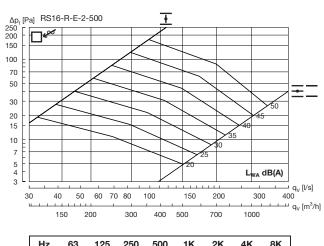
Hz	63	125	250	500	1K	2K	4K	8K
K_{ok}	8	5	1	-1	-5	-13	-21	-31

RS16 + H - Abluft

Hz	63	125	250	500	1K	2K	4K	8K
K_{ok}	2	6	3	-2	-7	-12	-21	-30


Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	8	5	2	-2	-5	-12	-21	-32

RS16


Technische Daten

RS16 + R - Zuluft

ı	Hz	63	125	250	500	1K	2K	4K	8K
	K _{ok}	9	2	3	-1	-8	-12	-21	-28

RS16 + R - Abluft

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	8	0	0	-3	-5	-8	-18	-26

Die meisten von uns verbringen den Großteil ihrer Zeit in Innenräumen. Das Innenraumklima ist entscheidend dafür, wie wir uns fühlen, wie produktiv wir sind und ob wir gesund bleiben.

Wir bei Lindab haben uns deshalb zum vorrangigen Ziel gesetzt, zu einem Raumklima beizutragen, das das Leben der Menschen verbessert. Dafür entwickeln wir energieeffiziente Lüftungslösungen und langlebige Bauprodukte. Wir wollen auch zu einem besseren Klima für unseren Planeten beitragen, indem wir auf eine Weise arbeiten, die sowohl für die Menschen als auch die Umwelt nachhaltig ist.

Lindab | Für ein besserees Klima

