

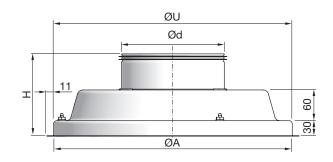
Lindab RC14

Integra - Dralldurchlass

Beschreibung

RC14 ist ein runder, deckenbündiger Dralldurchlass mit fest-stehenden Lamellen für Zu- und Abluft. Die Lamellen erzeugen eine sehr hohe Induktion mit einem sehr großen Dynamikbereich. Der Durchlass ist daher ideal für den Kühlfall. Vertikaler Anschlussstutzen mit LindabSafe. Der Durchlass kann in geschlossenen Decken montiert (Montagebügel DCZ) oder in Deckensysteme integriert werden (Modulplatte LM)

In Verbindung mit dem Anschlusskasten MB wird eine einfache Montage, eine zusätzliche akustische Dämpfung, eine Volumenstromeinstellung über eine vom Raum aus bedienbare Mess-/Drosseleinheit und eine gleichmäßige Anströmung zum Durchlass gewährleistet. Die Drossel B ist eine einzigartige, lineare Kegeldrossel, die einen vollen Betriebsbereich (0-100%) ermöglicht und zudem eine genaue und verlässliche Einregulierung mit einem sehr hohen Druckverlust bei extrem geringer Geräuschentwicklung erlaubt. Die Drosselelemente C und E sind einfache, seilzugbetätigte Regelklappen für Zu- und Abluft. Diese werden bei Anwendungen verwendet, bei denen ein geringer Druckabgleich notwendig ist.


- Großer Dynamikbereich
- Hohe Induktion
- Geeignet für Kühlung mit großer Untertemperatur
- Zu- und Abluft
- Anschlusskasten mit verschiedenen Drosselvarianten

Bestellbeispiel

Produkt	RC14	а	bbb
Тур			
RC14			
Funktion			
S = Zuluft			
E = Abluft			
Größe			
Ød 160-315			

Beispiel: RC14-S-250

Dimensionen

RC14 Ød	ØA	Н	ØU*	m
mm	mm	mm	mm	kg
160	360	140	370	5,30
200	360	140	370	5,40
250	460	140	470	7,40
315	540	140	550	8,10

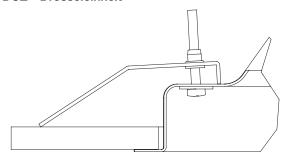
* ØU = Aussparung.

Ød 315, keine Löcher für MB Montage!

Wartung

Zur Reinigung der internen Komponenten oder für den Zugang zum Kanal oder Anschlusskasten kann die Frontplatte entfernt werden. Die sichtbaren Teile des Durchlasses können mit einem feuchten Tuch abgewischt werden.

Material und Ausführung


Material: Verzinkter Stahl
Standardausführung: Pulverbeschichtet
Standardfarbe: RAL 9010, gloss 30

Der Durchlass ist in anderen Farben erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

Zubehör

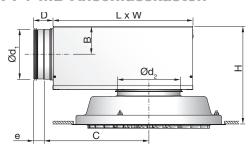
DCZ - Drosseleinheit


MBZ - Verlängerungsstutzen

Bestellcode - Zu	behör	
Produkt	aaa	bbb
Тур		
Größe		

Beispiel: DCZ-200

Modulplatte LM


Bestellcode - Modulplatte

	-			
Produkt	LM	а	RC14	ccc
Тур				
Deckensystem	<u> </u>			
Durchlass				
Größe				

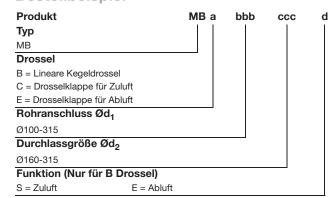
Beispiel: LM-1-RC14-250

Deckensystem - siehe Kapitel Deckenanpassung.

RC14 + MB Anschlusskasten

Ød ₁	$\emptyset d_2$	В	С	D	е	H*	L	W
m	m		mm					
100	160	62	245	78	40	250 - 290	310	260
125	160	75	291	78	40	275 - 315	376	310
125	200	75	291	78	40	275 - 315	376	310
160	160	92	352	78	40	309 - 349	459	380
160	200	92	352	78	40	309 - 349	459	380
160	250	92	352	78	40	309 - 349	459	380
200	200	112	425	78	40	350 - 390	565	460
200	250	112	425	78	40	350 - 390	565	460
200	315	112	425	78	40	350 - 390	565	460
250	250	137	514	118	60	400 - 440	698	540
250	315	137	514	118	60	400 - 440	698	540
315	315	170	675	118	60	465 - 505	858	540

* Bei Verwendung mit MBZ wird H länger bei:


 $Ød_2 = 100 - 200 \text{ mm} => \text{H} + 40 \text{ mm}$

 $Ød_2 = 250 - 315 \text{ mm} => H + 60 \text{ mm}$

Drosselvarianten

Bestellbeispiel

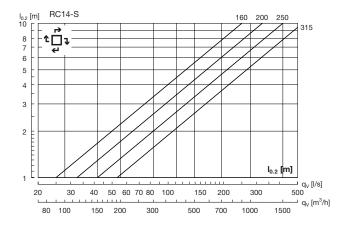
Beispiel 1: RC14-S-250+MBB-200-250-S Beispiel 2: RC14-200+MBC-125-200

Technische Daten

Die nachfolgenden Werte gelten für RC14 + MBB-S/-E. Die Werte für MBC und MBE finden Sie unter www. lindQST.com.

Leistung

Die Diagramme zeigen den Gesamtdruckverlust Δp, [Pa], Wurfweite $I_{0,2}$ [m] sowie Schallleistungspegel L_{WA} [dB(Å)] als Funktion des Volumenstromes q, [l/s, m³/h].


Frequenzabhängiger Schallleistungspegel

Der Schallleistungspegel im Frequenzbereich wird durch $L_{wa}+K_{ok}$ definiert. Die Werte für K_{ok} werden in Tabellen unter den folgenden Diagrammen angegeben.

Schnellauswahl, Zuluft

RC14 +	MBB-S	$\Delta p_t \ge$	50 Pa	∆p _t ≥ 50 Pa		
Rohr	RC14	30 c	iB(A)	35 c	B(A)	
Ød ₁	$\emptyset d_2$	l/s m ³ /h		l/s	m³/h	
100	160	37	133	44	158	
125	160	44	158	54	194	
125	200	50	180	62	223	
160	160	48	173	57	205	
160	200	56	202	67	241	
160	250	67	241	84	302	
200	200	62	223	74	266	
200	250	82	295	96	346	
200	315	102	367	126	454	
250	250	92	331	106	382	
250	315	117	421	139	500	
315	315	141	508	166	598	

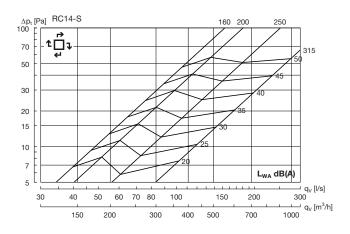
Wurfweite $I_{0,2}$ Die Wurfweite $I_{0,2}$ [m] wird bei einer Endgeschwindigkeit von 0,2 m/s angegeben.

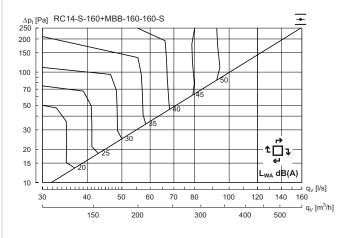
Eigendämpfung

Eigendämpfung der Durchlässe ΔL zwischen Rohr-/ Kanalsystem und Raum, einschließlich Mündungsreflexion.

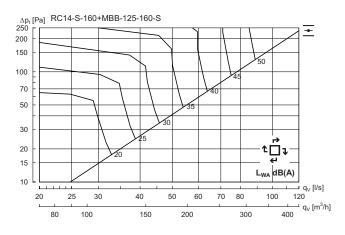
RC14 + M	IBB-S/-E								
Rohr	RC14			Mitte	lfrequ	ıenz	Hz		
Ød ₁	$\emptyset d_2$	63	125	250	500	1K	2K	4K	8K
100	160	18	15	5	11	18	19	18	19
125	160	15	13	8	17	17	17	18	20
125	200	13	11	6	13	14	17	17	19
160	160	16	15	11	21	18	20	21	20
160	200	17	15	9	21	18	19	20	20
160	250	17	14	4	18	14	16	18	19
200	200	14	11	8	15	19	17	20	18
200	250	14	10	5	14	18	14	18	17
200	315	14	8	3	10	16	15	17	16
250	250	14	9	7	15	18	17	19	18
250	315	12	7	6	14	16	15	17	17
315	315	8	9	9	13	17	16	18	22

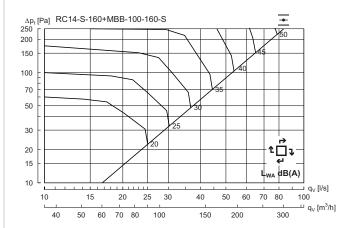
Einregulierung und Montage


Für weitere Information siehe www.lindab.de und Montageund Einregulierungsanweisung Integra.


RC14

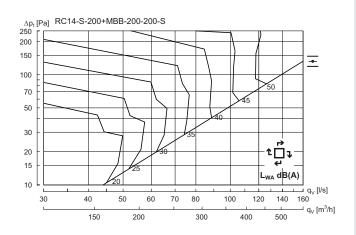
Technische Daten


RC14 ohne Anschlusskasten - Zuluft

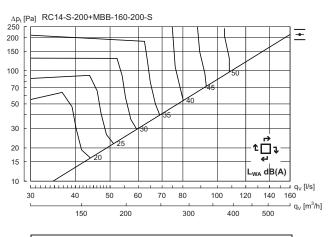

RC14 160 + MBB-S - Zuluft

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	6	2	-3	0	-4	-15	-26	-32

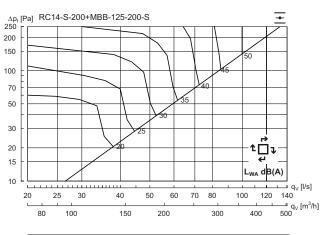
Hz	63	125	250	500	1K	2K	4K	8K
Kok	9	5	0	-1	-5	-13	-19	-25



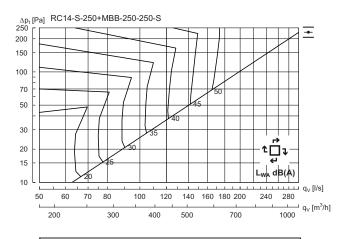
RC14


Integra - Dralldurchlass

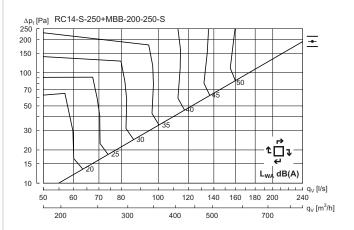
Technische Daten


RC14 200 + MBB-S - Zuluft

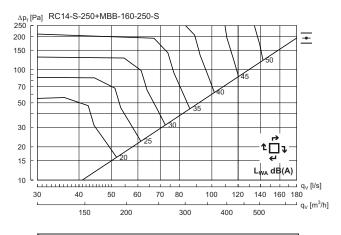
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	3	-3	-1	-5	-12	-24	-33



Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	14	4	-2	-2	-4	-12	-22	-30

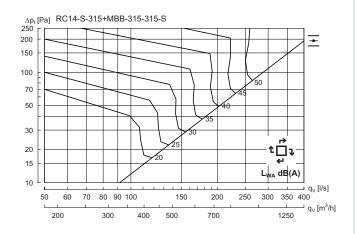


Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	8	6	1	-2	-6	-12	-17	-23

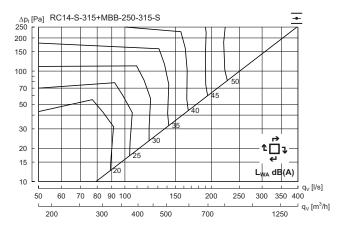

RC14 250 + MBB-S - Zuluft

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	10	1	-4	-1	-4	-14	-26	-37

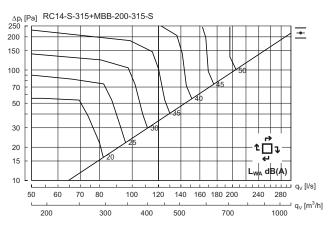
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	9	5	-3	-2	-3	-12	-24	-32



Hz	63	125	250	500	1K	2K	4K	8K
Kok	13	4	-1	-3	-4	-13	-21	-26

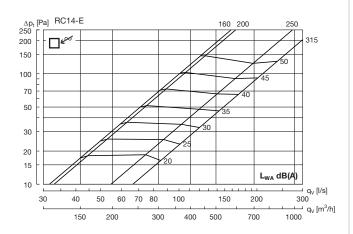


Technische Daten

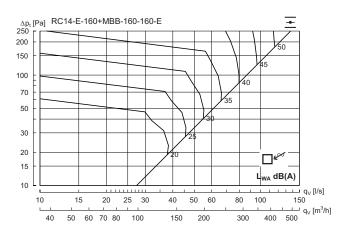

RC14 315 + MBB-S - Zuluft

				500				
Kok	14	3	-1	-1	-4	-13	-24	-33

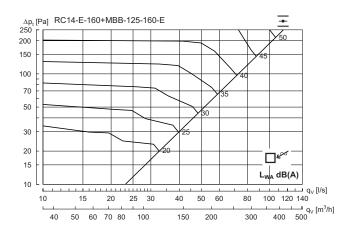
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	11	3	-2	-2	-4	-11	-21	-30

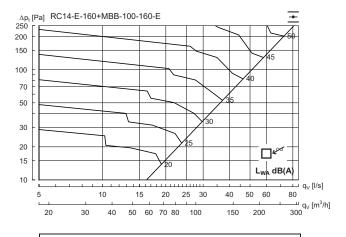

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	10	7	-1	-2	-4	-13	-21	-27

RC14


Integra - Dralldurchlass

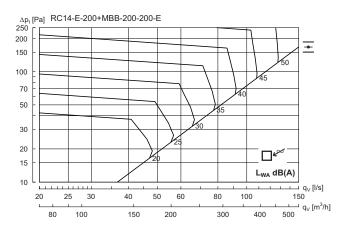
Technische Daten

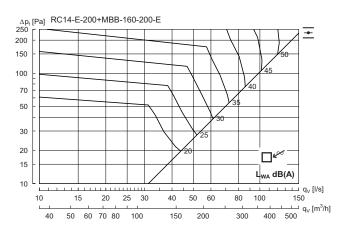

RC14 ohne Anschlusskasten - Abluft


RC14 - 160 + MBB-E - Abluft

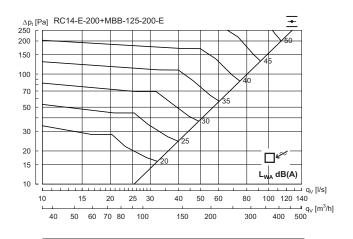
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	14	4	-2	-2	-4	-13	-20	-26

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	13	6	1	-1	-6	-13	-16	-22


Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	9	125	4	-1	-10	-12	-18	-24


RC14

Technische Daten


RC14 - 200 + MBB-E - Abluft

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	13	2	-4	-2	-3	-13	-22	-31

				500				
K _{ok}	16	5	-2	-3	-4	-12	-21	-26

500

-1

1K

-6

2K

-12

4K

-17

8K

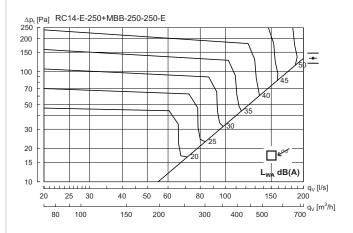
-23

Hz

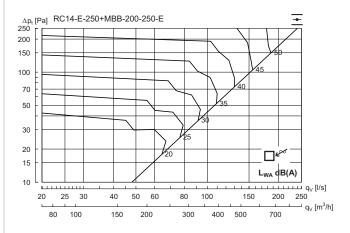
K_{ok}

63

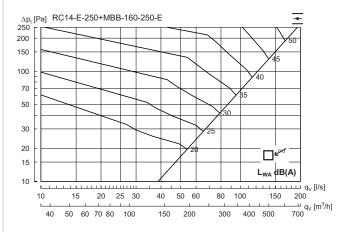
12


125

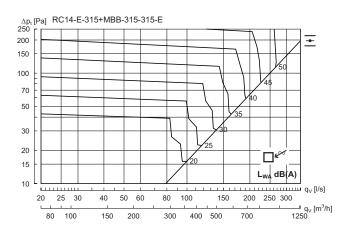
3

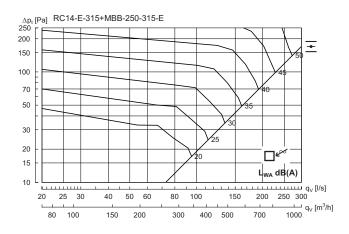

250

1

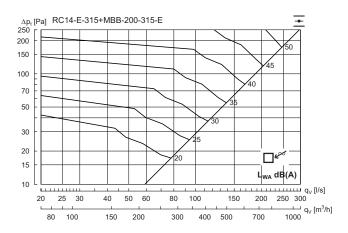

RC14 - 250 + MBB-E - Abluft

Hz	63	125	250	500	1K	2K	4K	8K
Kok	13	4	0	-2	-4	-12	-22	-31


H	2 63	125	250	500	1K	2K	4K	8K
K	, 12	4	0	-2	-4	-11	-19	-27


				500				
Kok	15	6	0	-2	-6	-11	-16	-22

Technische Daten


RC14 - 315 + MBB-E - Abluft

Hz	63	125	250	500	1K	2K	4K	8K
K_{ok}	10	3	1	-2	-4	-16	-24	-34

Hz	63	125	250	500	1K	2K	4K	8K
K_{ok}	9	5	1	-2	-5	-13	-18	-26

Hz	63	125	250	500	1K	2K	4K	8K
K_{ok}	14	6	1	-2	-6	-11	-16	-24

Die meisten von uns verbringen den Großteil ihrer Zeit in Innenräumen. Das Innenraumklima ist entscheidend dafür, wie wir uns fühlen, wie produktiv wir sind und ob wir gesund bleiben.

Wir bei Lindab haben uns deshalb zum vorrangigen Ziel gesetzt, zu einem Raumklima beizutragen, das das Leben der Menschen verbessert. Dafür entwickeln wir energieeffiziente Lüftungslösungen und langlebige Bauprodukte. Wir wollen auch zu einem besseren Klima für unseren Planeten beitragen, indem wir auf eine Weise arbeiten, die sowohl für die Menschen als auch die Umwelt nachhaltig ist.

Lindab | Für ein besserees Klima

